Inhibition of c-Abl Kinase Activity Renders Cancer Cells Highly Sensitive to Mitoxantrone
نویسندگان
چکیده
Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.
منابع مشابه
Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression.
Imatinib, a potent tyrosine kinase inhibitor, is effluxed from cells by the breast cancer resistance protein (BCRP/ABCG2), yet published studies to date fail to demonstrate resistance to imatinib cytotoxicity in BCRP-overexpressing cells in vitro. We investigated cellular resistance to imatinib in BCR-ABL-expressing cells transduced and selected to overexpress BCRP (K562/BCRP-MX10). These cells...
متن کاملTumor and Stem Cell Biology eIF4BPhosphorylation by PimKinases Plays aCritical Role in Cellular Transformation by Abl Oncogenes
Alterations in translation occur in cancer cells, but the precise pathogenic processes and mechanistic underpinnings are not well understood. In this study, we report that interactions between Pim family kinases and the translation initiation factor eIF4B are critical for Abl oncogenicity. Pim kinases, Pim-1 and Pim-2, both directly phosphorylated eIF4B on Ser406 and Ser422. Phosphorylation of ...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملBCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells.
Chronic myelogenous leukemia (CML) results from malignant transformation of a primitive hematopoietic cell by the BCR/ABL oncogene. The breakpoint cluster region/ABL (BCR/ABL) tyrosine kinase inhibitor imatinib mesylate (imatinib) is highly effective in inducing remissions in CML. However, the effects of imatinib on intracellular signaling in primary progenitor cells are not well described. We ...
متن کاملDual inhibition of Bcr-Abl and Hsp90 by C086 potently inhibits the proliferation of imatinib-resistant CML cells.
PURPOSE Although tyrosine kinase inhibitors (TKI) such as imatinib provide an effective treatment against Bcr-Abl kinase activity in the mature cells of patients with chronic myelogenous leukemia (CML), TKIs probably cannot eradicate the leukemia stem cell (LSC) population. Therefore, alternative therapies are required to target both mature CML cells with wild-type (WT) or mutant Bcr-Abl and LS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014